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Abstract- In a joint of two dissimilar materials under mechanical or thermal loading the stresses
at the intersection of the edges and the interface are very high or singular for elastic materials
behaviour. For most joint geometries and material combinations there is a type of r '" singularity"
However, for some joint geometries and material combinations there is a type of In(r) singularity"
In this paper, the type of In(r) stress singularity for a two dissimilar materials joint under thermal
loading is treated by the Mellin transform method. Emphasis is placed on the asymptotical descrip
tion of the stress distribution near the singular point. The angular functions used to describe the
stresses are given in a general form, which are different to those of the same joint under edge
tractions. For a quarter-planes joint angular functions are given in an explicit form. Finally.
examples are presented to show when the asymptotical solution for the type ofln(r) stress singularity
can be used to describe stresses near the singular point in the practical relevant joints. For a finite
joint the unknown factor. K, used to describe the stress is given as well. ':D 1998 Elsevier Science
Ltd. All rights reserved.

NOTATIONS

<I> stress function
T temperature change
q see eqn (I)
E Young's modulus
I' Poisson ratio
ox thermal expansion coelficient and Oundurs parameter
f3 Oundurs parameter

polar coordinates
P rl L. L is a characteristic length of a joint
(} polar coordinates
Ro radius with temperature change in a semi-infinite joint
Ro RoiL
To, temperature change III a semi-infinite joint
s Mellin transform parameter
ail stress tensor
a normal stress component
T shear stress component
u displacement component in the r direction
l' displacement component in the (/ direction
IIXii see eqn (14)
g" see eqn (15). eqn (14)
p" see eqn (16), eqn (14)
t,; see eqn (20), eqn (25)
t,; see eqn (21), eqn (26)
I,t see eqn (22)
(!) stress exponent. (!) = s+ 2

l. INTROOUCTlON

In many technical applications, dissimilar materials have to be joined together. Due to the
difference in elastic properties and thermal expansion coefficients of the components joined,
high stresses occur at the intersection of the edges and the interface or at the interface
corner under mechanical or thermal loading. Changes in temperature cause thermal stresses
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as a result of the different thermal expansion coefficients. This is important especially if
joining is done at high temperatures. In the sense of linear elasticity, stress singularity exists
for most material combinations at the intersection of the edges and the interface of the
joint (denoted as a singular point).

In the last ten years, many studies were published about analyses of the stress singularity
in a joint under mechanical or thermal loading. Some of them deal with the dependence of
the order of the singularity on the wedge angles and on the material constants for a joint
with free edges (see e.g., Williams, 1952; Bogy, 1968; Hein and Erdogan, 1971; Dempsey
and Sinclair, 1981 ; van Vroonhoven, 1992; Vasilopoulos, 1988; Theocaris, 1974), for a
joint with edge tractions (see Bogy, 1971), for a joint with an interface corner (see Bogy
and Wang, 1971) and for a joint with free--fix or fix·--fix edges (see e.g. Williams, 1952:
Dempsey and Sinclair, 1981). Others cover the stress distribution near the singular point in
a joint with free edges (Munz and Yang, 1992; Knesl et aI., 1991, Blanchard and Ghoniem,
1989,1990; Suga et al., 1989), in a joint with an interface corner (see Yang and Munz,
1995) and in ajoint with edge tractions (see Yang and Munz, 1997). All of them apply to
the type of r-- W singularity, i.e., the stresses near the singular point can be described by

where r and (I are the coordinates (see Fig. I), L is a characteristic length of the joint, WI/ is
real, and WI/ > O.

There is also another type of stress singularity. Bogy and Dempsey (see Bogy, 1970;
Bogy, 1971; Bogy and Wang, 1971: Dempsey and Sinclair, 1979, 1981) described the
conditions of a two dissimilar materials joint with the type of In(r) or r,n In(r) singularity.
Bogy (see Bogy, 1970) studied the type of In(r) singularity in a quarter-planes joint under

(a) -----.-----_______________

Material 1

e

Material 2

(b) ..----lii'-----4"---T

~-+
~-4-1

Fig. I. The geometry investigated.
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edge tractions. Dempsey (see Dempsey, 1995) examined special cases with an rOW In (I')
singularity. However, there has been no study, so far, of the asymptotical description of
the stress distribution for a type of In(r) singularity in a two dissimilar materials joint under
thermal loading, i.e., the angular functions and the factor K used to describe the stress
distribution near the singular point are unknown. In this paper, the type of In(l') stress
singularity is treated by the Mellin transform method for a joint with free edges under
thermal loading. Emphasis is placed on the asymptotical description of the stress dis
tribution near the singular point. For a finite joint angular functions and the unknown
factor, K, used to describe the stress are given. For a quarter-planes joint, angular functions
are given in an explicit form. The angular functions for a joint under thermal loading are
different to those shown by Bogy (see Bogy, 1970) for a joint under edge tractions.

Although the type of In(r) singularity is unlikely to occur in practice, the meaning of
this paper is to complete the solution of the singularity problems. The most important
application of the solution for the type of In(r) singularity is that it can be used to describe
the singular stress field well for material combinations with very small stress exponent OJ in
the type of 1'-" singularity. which will be seen in the given examples. For joints under
thermal loading this is useful, because for material combinations with very small stress
exponent w (w --> 0) the solution from the type of to UI singularity is not stable.

2. SOLUTION IN THE MELLIN TRANSFORM DOMAIN

When thermal loading is taken into account and body forces are disregarded, the stress
function, <D, should satisfy the equation

(I)

with

'XE for plane stress

q = ti.E

(1- v)
for plane strain'

where T is the temperature change, E is Young's modulus, v is the Poisson ratio, 'X is the
thermal expansion coefficient. To find an analytical solution ofeqn (1), the Mellin transform
method is used, because in Mellin domain eqn (1) is replaced by an ordinary differential
equation. In the Mellin transform method a semi-infinite space is considered. Therefore, at
first a semi-infinite joint with the temperature change

for I' ~ Ro

for I' > Ro

is considered (see Fig. I).
The Mellin transform of a function, <D(p, 0), is defined as

<Il(s, 0) = f' <D(P,O)p(S I) dp
• I)

(2)

where s is a parameter of the Melling transform, and P is dimensionless (P = I'lL, L is a
characteristic length of the joint). The parameters should be chosen so that the integration
in eqn (2) is valid. The property of the Mellin transform is
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r(s+p) ~
I)q r( ) l1>(s+p-q, 0)

s+p-q
(3)

where rex) is the r-function.
The Mellin transform of eqn (I) then reads

with

t(s +2) = r.C( qTr'+ 1) df = _f{~~ Rb\+ 21

Jo .1'+2

(4)

(5)

where Ro = Ro/L.
If .I' is considered as a parameter, eqn (4) is an ordinary differential equation of the

variable O. Its solution is

(6)

where Ak , Bk (Ak , Bk is the conjugate complex number of A., Bk ) are unknown and k = I,
2 for materials I and 2. In order to determine the unknown A., Bk the boundary conditions
expressed by the Mellin transform are used for a joint with free edge. They are

at the interface

o= (J I: i I rO + ia 100 = 0

(J = O2 : i2rO+ia2011 = 0 (7)

(8)

where u and v are the displacement in the direction rand O. The physical meaning of eqn
(7) is that at the free edges 8 = 01 and 8 = O2 the normal stress ao and the shear stress rrO

are zero. The physical meaning of eqn (8) is that at the interface 0 = 0 the normal stress ao,
the shear stress rrO and the displacements u and l' should be continuous in materials land
2. To use the boundary conditions the stresses and the displacements have to be transformed
in the Mellin domain.

The Mellin transform of the stress components is

(

(1
2

)a,.,.(s, 0) =~~-; - .I' <D(s, 0)
o8~

600 (.1',0) = (.1'+ I )s<D(s, 0)

, . o<D(s, 8)
rro(s, 8) = (.I' + I) --a()~ .

The complex form of the Mellin transform of stresses and displacements is

(9)
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(
~ ,
(; ....

fro(s,O)+idIlOC~,O)=(.1'+1) cO + is) <I>(.dJ)

and

KT(s+2)
2G{u(s+ LO)+iv(s+ 1,0)) = -- 4( 1

.1'+ )
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(10)

with

4

K= (1+\')

4(1- v)

for plane stress

for plane strain

To obtain a real description of the stresses and displacements, the coefficients, AI, B
J

and
A], B], are separated as

A,=CJ+iD J , A]=C]+iD]

BJ=FJ+iH I • B]=F]+iH].

Then the Mellin transform of the stress function is real in

<Dk(S,O) = 2{ C, cos(sO)-- Dk sin(s8) + Fk cos( (.I' + 2)0) -Hk sine (.I' + 2)O)}
1;: (s+2)

(12)

(13)

After substitution of eqn (13) into eqn (10) and eqn (11) then into eqn (7) and eqn (8), the
coefficients, Cb Db Fk and H k can be determined (for details, see Yang and Munz, 1994).

From Yang and Munz (1994) we have the following relations for stresses in the Mellin
domain:

(14)

where

ToRi]!]
grr(s) = 2

s

T R'+]
g,o(s) = 0 0 + 1),

s
(15)

Pil(s,8) = A 11/(.1') cos (.1'0) + A]iis) sin(sO) + A 3i/(s) cos( (.I' + 2)8)

+A 41j(s)sin((s+2)tJ)+A"ll') (16)
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and IIXII is the determinant of a matrix. The definitions of IIXII and AI/j(s) with ii = IT, 00,
rO and I = 1,2, 3,4,5, see Yang and Munz (1994) in eqns (30)-(32).

For example,

A ln = -C*2(.\+I),

A 2n = D*2(s+ I),

A 3n = -F*2(.\c+5s+4),

A 4n = H*2(sc+5s+4),

As" = 2q11XII,

where C*, D*, F*, H* are contained in eqns (26) and (28) of the paper by Yang and Munz
(1994). They are a function of the material properties EJ, E2, Vj, v2, the angles OJ, O2, and
the parameter s. All quantities, IIXII and AI/" can be obtained analytically.

;. SOLUTION IN A POLAR COORDINATE SYSTEM

Our aim is to calculate the stresses in a polar coordinates system, i.e. (li/(s, f}), which is
the reversal transform of O'Ij(s, 0). For the calculation of the reversal of O'Ij(s, 0) we need the
poles of 0',,(01',0), which are defined as follows: if lim,~s,. o-ii(S, 0) --Y-, ,I'k is the pole of
o-,,(s, 8). From eqn (14) it can be seen that the possible poles of o-i/(S, 0) are the solutions of
I Xii = 0 and S = -2.

From the definition of the reversion of the Mellin transform, the stresses in a polar
coordinate system can be calculated by

(l,p,O) = 1. r;"/.· ,fu(s,O)r ,,+21 ds
2nl iLI~'--it

(17)

where }' must be chosen so that the integration in eqn (17) exists. According to the residual
principle stresses in the polar coordinate system can be obtained from

(l,/(r,O) = I res (d'i(s" O)r ('I + C)}
Ii. <",

I dill I

= I -----~·lim------ {(s - sk)III,f,;(S, f})r 10+ 2'}
" (11I-1)"~" dslll " I .

IJ--,lim~:--~{(S_'\·dlll£!Js"O)gil0.)f (If:l/' (18)
,,<;(11I-·-I).'+"ds'" I XI!(s+2) I

where Sk is the m-th order pole of o-u(s, 0). In this paper, we consider only the case with
m = 2 and Sk = - 2, i.e. s = - 2 is the second order pole of o-i,(S, 0), which corresponds to
the type ofln(r) singularity. From eqn (18) and the equations in Yang and Munz (1994)
we know that is the case with IIXIII, -c, [(dIIXII)jdsll,~ -2 = 0, [(d 21IXII)lds"'11,o2 of. 0 and
Pu(s.O) .", = 0, [(iJPi;(S,O))/cs]l,o "' of. 0, because for s = -2 there is always 9i/(S) of. O.
For the case with m > 2, the calculation for the reversal of stress o-i/S, 0) is more complicated,
but the procedure is similar to that given here for 111 = 2.

For m = 2 and S = 2, the stresses in polar coordinates can be calculated from
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. d f ??)p,/s,O)gu(S)}
(J1I(r,O) = ,llm2 d~ l(s+2)-r \" -rfT<,;:-=t-2)

_ . Pil(S, (j)(.1 +2)
-gll(sH,o "In(r) J~m"---]Xlr---

()Pi/(s,O) . d11X11
--;~--(s+ 2) IIXII + IIXllpil(S, 0) - -~(S+2)Pii(S, 0)

+gii(S) ,lim
",. " ilXII"

. Pii(S,8)(s+2)IIm ---------.
,." X

(19)

In the following, definitions

I .
- hm
2 ,. "

eJPi/(S,O)
(~S

0)(.1'+ 2)

IIXII

(20)

api/I', 0)
---~-(s+2)I!X

. us
t({1) = hm
I} . y ..".. 2

d11X11+ II Xllpi/(s, 0) - ··-d·.---·(s+ 2)pil(s, 0)
.I'

(.d. "IIXII'"
d,I'; ..... )

and

d" XII
...........c..--"_ .

ds" as"

apii(S,O)
._,._,--_._--_.._--

as
(21 )

(22)

will be used, where In = (7~J!4), 1011 = (To/4) and Iro = -(To/2). From eqn (15) we have

~g,j(~) I
ds ,...

(23)

with K = 2In(Ro) and Irr = I, 100 I, 1'0 = - I. The stresses near the singular point in
polar coordinates finally can be rewritten as

(Jil(r,O) = Iii {- 2In(r/L)/;,(O) + ti,cO) + (K + I,/)./;/(O)}. (24)

In eqn (24), the quantity (J1I(r,O) has the same unit as the Young's modulus, i.e .. MPa or
GPa, K is dimensionless, /;/0) and tll(O) have the unit of Ek * (Xb and Iii has the unit of
temperature. The functions, /;1((1) and t,iO), can be calculated analytically from eqns (20)
and (21), because Piles, 0) and IIXII are known. They depend on the material parameters
(Eb E", Vb V2 , (Xl, (X2) of the components joined and the angles 0, and 0". Iii is proportional to
thermal loading. For a semi-infinite joint. the factor K is known.
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Generally, the functions .rik(O) and tijk(8) (k = I, 2 for materials I and 2), have this
form:

(25)

(26)

The coefficients, Flilk and TI1 i/k with ij = rr, 00, 1'0; I = I, 2, 3, 4 and n = I, 2, 3, 4, 5, 6, can
be calculated analytically by substituting eqn (16) into eqns (20) and (21). For an arbitrary
geometry (i.e., arbitrary 0 1, ( 2), the relations between the coefficients .fli/k , Tnijk , the material
properties (EI , E2, VI' V2,:Xj, :(2), and the geometry (-)j, O2 have a very long form. However, for
a quarter-planes joint (i.e., 0 1 = O2 = 90), they are simple, which are given in an explicit
form as follows by using the REDUCE-code. For the coefficients F~'/k there is:

F~lik = 0

FWI = FLi/2 for L = 1,2,3

FI.,Uk = 0, for L = I, 3

FWk = 0, for IJ = 1'1', O(J.

For the coefficients T"i/k there is:

(27)

(28)

(29)

(30)

(31 )

16Q ). ,
T ln2 = -Z2'(Z(rx + 2fj + OJ) + 32(:x - fJ)((3:x - 2[3)(a - 2ff) + (-)1)) (33)

TWk = 0 for JJ = rr, (JO (36)

. 32Q
TS,rl = T Srr2 = -i-:X (37)

16Q )
T lrrl = 2;-(Z«2:x+ 1)(11 - (rx - 2fj) + 32(a -IJ)((3rx - 2fjH:x - 213) + Om (38)



Asymptotic description of the logarithmic singular stress field and its application 3925

16Q ~ J .?

T ulin = -----(Z(rx-2{1+£Ij)-32(rx-{J)((3rx-2f3)(rt-2[3)+8i» (42)
Z2

16Q J J

T 1002 = 22 (2(rt - 2{3 - Oi) - 32(rt - (3)( (3rt - 2{1)(rx - 2(3) + OJ)) (43)

T~'O{)k = Tv,-'k for]ll = 2.5

TNtOk = 0 for]ll = 5,6

with

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

Ek for plane stress

for plane stress

for plane strain'

E" for plane strain'
(54)

where rt, {1 are the Dundurs parameters defined as

1(2 -gK[
·rt =

1(2 +gKI

(1(2- 2)-g(KI-2){I = _.--~-_._--_.._.
K2 +gK\

(55)
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4. RESULTS AND DISCUSSIONS

In this Section, four examples will be presented to show the application of the asymp
totic solution of the logarithmic singular stress field in a quarter-planes joint. A comparison
of the stresses from FEM and the analytical description as in eqn (24) for the type of In(r)
singularity is given at first to show the good agreement of them. Then the use of the
analytical description for the type of In(r) singularity is presented to evaluate the singular
stresses analytically, without using any numerical method, for joints with very small OJ in
the type of r'" singularity.

Theoretically, if the stress exponent (J) (OJ = 2+s, and s is the solution of IIXII = 0) is
not zero, the stresses near the singular point in a joint under thermal loading should be
described by

(56)

where (Jijo(() is the regular stress term and can be determined analytically (see Yang and
Munz, 1992; Munz et al., 1993; Yang and Munz, 1994), hijn(O) are the angular functions
for non-logarithmic stress singularity and can also be determined analytically (see Munz
and Yang, 1994). The distance, r, is divided by L so that the factors, K,,, have the unit of
stress. For an arbitrary geometry and an arbitrary materials combination, there may be
more than one singular term. Equation (56) includes all singular terms in the sum, i.e., in
eqn (56), OJ" > O. For a quarter-planes joint there is IV = I.

If the value of w is very small, however, the use of eqn (56) is questionable. The
equation IIXI = 0 is a transcendental equation. To solve it a numerical method has to be
used. For very very small (J) (m < 10 6), the solution is sensitive to the explicit form of ilX .
In fact, for the same IIXII explicit form using different numerical method to solve IIXII = ()

the solution is different as well. This means that it is difficult to determine the accurate
value of (I) for a materials combination with a very very small (I). Therefore, using eqn (56)
to describe stresses near the singular point in a joint under thermal loading is difficult. In
fact, from the sense of the physical meaning, the exact value of (I) is not important for the
joint with very very small (I). On the other hand, for a two dissimilar materials joint under
thermal loading, due to the effect of the regular term (JIi,lO) the case ()f (I) -. 0 does not
mean that the stress singularity disappears. However, this cannot be seen from eqn (56)
obviously.

From mathematics it is known that if OJ-,O there is also [(dliXII)fds] -.()
(Sf, = w-2). Now the question arises whether eqn (24) can be used to calculate the stresses
near the singular point in a joint with very small (J) under thermal loading. If so, how small
can w be?

Although eqn (24) is deduced from the case ofa semi-infinite joint with the temperature
change

{
To

T= o
for I' :( Ro

forI' > Ro,

it can be used in a finite joint with a homogeneous temperature change to calculate the
stresses near the singular point (it should be noted that this solution is used only in the area
near the singular point). This means that the angular functions are the same for a finite
joint as for a semi-infinite joint; only, for a finite joint, the quantity Ro is unknown and
therefore, the factor Kin eqn (24) is unknown. It has to be determined from the stresses
calculated by FEM.

The method to determine the factor K for a tlnite joint will be simply presented as
follows. In eqn (24) the quantitiesf,i(O), 1,,(0), Iii and Iij can be calculated analytically, if the
stresses are known from the FEM. we can define one quantity n :
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M

TIu = L {O"~EM(r,.O,)-lu{ -2 In(r,/L)f: j (8,) + t,j(O,) +(K+liJ{;,(Ot)}] (57)
,~ 1

where there is ij == XX, yy, xy, or rr, 00, rO, M is the number of the used points for the
determination of the K factor. In principle, any stress component at any point (r" ( 1) near
the singular point can be used. In general, we use the points along a line, i.e. 0, is a constant.
Following the least square method the factor K can be determined from

aTI".... .:.. = O.
DK

(58)

For the calculation of the stresses from FEM a standard element with eight nodes is used.
The mesh needs not to be very fine.

In eqns (20) and (21), the functionsf:, and (} are given in polar coordinates. By using
the transform between polar coordinates and Cartesian coordinates,

I, =./,cos"(O) +f;, sin"(O) 2f;0 sin(O) cos(O)

f; = f; sin" (0) +fo cos" (0) + 2f;o sin (0) cos(O)

f;, = U;· -f;l) cos(O) sin(O) +f.o(cos" (0) - sin" (0)) (59)

we can obtain the corresponding quantities in Cartesian coordinates. For a quarter-planes
joint, after transformingt;/u from polar coordinates to Cartesian coordinates, there is

f), = 0

. To,
f,l,. = 2 [<1001

f~, In = O. (60)

From eqns (24) and (60) we know that, in Cartesian coordinates the stress components 0",

and, 'I are independent of r (the distance from the singular point) and the factor K.
Therefore, 0", and 'xy are not singular. Only the stress component 0",. is singular.

The results given in the following are for plane strain. The geometry is HI/L H)L = 2
(see Fig. 1). For the FEM-calculation the ABAQUS-code was used with eight nodes
standard element. The mesh near the singular point is tine. The smallest length in the
element is about 10 5L.

Example I
The materials data for Example I are

E 1 ==c 100GPa. 1

3'

For this joint, the stress exponent is

w=O.

and
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91~~111, = 0,

~"":Ill "" o.
ds" ,

This is the case of'Y. 2/3 for a quarter-planes joint.
The factor Kin eqn (24) was determined by using eqn (58) and FEM. For this example

there is

K 0.4424

which is the averaged value of those calculated from eqn (58) with (J/ = -- 90', 90', - 45 ,
45 and O. Using the K-factor as determined we can calculate the stresses analytically at
an arbitrary point with eqn (24). Comparison of the stresses obtained from FEM and with
eqn (24) along (J = 0 is shown in Fig. 2. The quantities used to calculate the stresses with
eqn (24) in Cartesian coordinates system are

(J' (Jij lu, GPa/K {,j' GPa/K

0 (J, 0 -2.1863*10 4

0 (J, - 1.4899 * 10 4 6.8670* ]0 4

0 T\\, 0 - 3.5106 * 10- 4.

The results show that the stresses calculated by FEM and with eqn (24) are in excellent
agreement in the range near the singular point. So, we can say that eqn (24) can describe
very well the stresses near the singular point analytically for the type of In(r) singularity.

For the same joint, but with remote mechanical loading, i.e., at the upper and lower
surfaces of the joint there is a homogeneous stress (e.g., 0', = I MPA); the stress distribution
in the joint was calculated by FEM. The stress distribution along 11 = 0 is plotted in Fig. 3.
rt can be seen that there is no stress singularity in this joint under remote mechanical
loading.' ."

Therefore, we can say that IIXIII,~2 = 0, [(dIIXII)/dsH,o .. 2 = 0, and [(d"'IX!I)/ds"H,
2 "" 0 are not all conditions for the type of In(r) singularity. It also depends on the loading.

]0'
r/L

la' 10°

~::f~
o~==:::=::::::~

-25-: 'r""""";~~'T"" ~.=~
-10 -5 0

In(r/L) (along 0 _ 0')

Fig. 2. Comparison of the stresses calculated by FEM (symbols) and with eqn (24) (lines) along
() = () for Example I under thermal loading.
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1.0-

Ii:
::'E 0.5
t>

104
r/L

10' 10"
_._L ..... J

i ~
0.0 _1.!!1~.!!Il!l.l!IAl!UI".e!I.I!l.l!Il!l.$J!l.l!I.l!U!ll!l.l!I.al!l.Aaal!l.l!!.e.J!l.l!Il!l.t!Il!l.l!lTr0

-TI-'-"r-T--"-~'--IT""""""'-~-T'-"r-'l

-10 -5 0

In(r/L) (along (;) ~ 0")

Fig. 3. Stress distribution along 0 = 0 for Example I under mechanical loading.

Example 2
The materials data for Example 2 are

E I = 100GPa, VI = 0.333':X1 = 2.5 * 10 6 /K,

E2 = 54 GPa, 1'2 = 0.2, :X2 = 8.5 * 10 6/K.

For this joint, the stress exponent is

w = 6.0222 * 10

and

dlXI
ds

Although the conditions for the type of In(r) singularity are not satisfied exactly, eqn (24)
is used to calculate the stresses near the singular point. The obtained K factor in eqn (24)
IS

K = 0.3856.

The quantities used to calculate the stresses with eqn (24) are

() (Jij (;/, GPa/K ('I' GPa;K

-45 (J,. 7.44588 * ]() :5 7.79347 * 10- 6

-45 {]n -7.44588 * 10 5 6.94198*]0 4

-45 I rO -- 3.72294 * 10 5 2.38395 * 10 4

A comparison of the stresses obtained from FEM and with eqn (24) along () = - 45 IS
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Fig. 4. Comparison of the stresses calculated by FEM (symbols) and with eqn (24) (lines) along
II = ··45 for Example 2.

shown in Fig. 4. The results show that, for this materials combination (i.e., the stress
exponent w is approximate 6 * 10- 5

), eqn (24) can be used as well to describe very well the
stresses near the singular point, and that, although the stress exponent OJ is very small the
stress singularity is obvious.

Because the absolute value of the term Kfji/ is relatively lower than that of the term
In(r) ./ji; for a very small distance r, we know from eqn (24) that the stresses calculated
from eqn (24) are not sensitive to the accuracy of the K factor determined. To see the effect
of the value of K in eqn (24) on stresses in Fig. 4 the stresses calculated from eqn (24) with
K = 0 are also plotted as dashed lines. In Fig. 4 the solid lines indicate the results with
K = 0.3856. It can be seen that the effect of the value of K on stress is not strong. When
the absolute value of K is lower, the effect of K on stresses is smaller.

In the following two examples will be given to show for which materials combination
eqn (24) with K = 0 can be used to calculate the stress distribution near the singular point.

Example 3
As Example 3 a real material combination is chosen, which is a Si,N4! W joint. The

materials data are

E I = 314GPa, VI = 0.28, Ct. 1 = 2.7 * 10 "/K.

E2 = 411 GPa, "2 = 0.28, Ct. 2 = 4.5 * IO-"/K.

For this joint, the stress exponent is

(t) = 0.0056.

The stresses were calculated by FEM and from eqn (24) with K = O. The quantities used
to calculate the stresses with eqn (24) are

{) (Jil '/;i,GPa/K f ii , GPa/K

~45 u( ·-4.7979* 10 7.9641 * 10 4

--45 (Jo 4.7979 * 10 5 3.3018*10 4

-45 !,.{! ~2.3990 * 10 .5 6.5716* 10

A comparison of the stresses obtained from FEM and from eqn (24) with K = 0 along
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Fig. 5. Comparison of the stresses calculated by FEM (symbols) and with eqn (24) (lines) along
() = - 45 for Example 3.

(} = -45 is shown in Fig. 5. The results show that, for this materials combination (i.e"
the stress exponent OJ is approximate 6 * 10 3) eqn (24) with K = 0 can be used as well to
describe well the stresses near the singular point (with error < 6% for r/L < 10 1).

Example 4
The materials data for Example 4 are

E] = 100 GPa, VI = 0.3. tX l = 2.5 * 1O- 6 /K,

E1 50 GPa. V2 = 0.2. tX 1 = 8.5 * 10 6/K.

For this joint, the stress exponent is

(() = 9.6826* 10 3

The stresses were calculated by FEM and from eqn (24) with K = O. The quantities used
to calculate the stresses with eqn (24) are

(} (fit /;/. GPa/K l'I,GPa/K

-45 a, 7.479h 10 5 - 2.1864 * 10- 5

-45 all 7.4797 * 10 5 6.8028 * 10- 4

-45 "[rO - 3.7399 * 10 5 2.3596 * 10- 4
•

A comparison of the stresses obtained from FEM and from eqn (24) with K = 0 along
() = -45 is shown in Fig. 6. The results show that for this materials combination (i.e., the

r/L
l~ lif lif

~::~~~
b 0r~ ./:~;;:,

1. ~"" T" "~-.~
-25-~_

,
L"I ---r ._- ..__._", 'I """'T"'-T''''''''T''''''"T'''''-'--i --1

-10 -5 0

In(rIL) (along 0 - -45'')

Fig. 6. Comparison of the stresses calculated by FEM (symbols) and with eqn (24) (lines) along
o=-- 45 for Example 4.
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Fig. 7. Stress exponent w for some practical relevant material combinations: curve I is for 1', = 0.2,
1', = 0.3: curve 2 is for 1', = 0.2, v, = 0.2; curve 3 is for 1', = 0.3, 1', = 0.3; curve 4 is for 1', = 0.25,

1', = 0.35.

stress exponent w is approximate 10- 2
), eqn (24) with K = 0 can be used to describe the

stresses near the singular point with error smaller than 10% for r/L < 10 2.

From Figs 4--6 it can be seen that the equations for the type of In(r) singularity with
K = 0 can be used to calculate stresses near the singular point if the stress exponent w in
the type of r-" is very small. It should be noted that FEM is not needed to calculate the
stresses near the singular point in a joint with very small (j) by using eqn (24) with K = O.

For practical relevant materials, i.e. 0.2 < 1'1 < OA and 0.2 < 1'2 < OA, material com
binations with 0.6 < E = E2/E I < 2 have usually very small stress exponent <0, see Fig. 7.
Therefore, the application of the asymptotic description of the logarithmic singular stress
field is of interest. Numerical calculations show also that if (j) is negative, but absolute value
very small. eqn (24) with K = 0 can be used to calculate stresses near the singular point as
well.

5. CONCLUSIONS

In this paper, the type of In(r) singularity in a two dissimilar materials joint with a free
edge under thermal loading has been studied by the Mellin transform method.

If .I' = - 2 (i.e. OJ = 0) is the second order pole (m = 2) of 0',/.1', 0) = [(pi/(s,O)gufs))/
(1IXII(s+2))] in the Mellin domain, there is the type of In(r) singularity. This is the case
with IIXlt~ -2 = 0, [(dIIXIIJ/dsll,.c 2 = 0, [(d 2 1IXlI)!d.12

] 2 #- 0 and p,)s, 0)2 = 0,
[(op;ll',O))/as]I, -2 #- O.

For the case with m = 2 and .I' = - 2, in an arbitrary finite joint under thermal loading
stresses near the singular point can be calculated from

(61 )

For a quarter-planes joint (0 1 = -()= = 90), the angular functions/;pJ) and tij(O) in polar
coordinates were given in an explicit form. The K factor can be determined by using the
stresses calculated by FEM and the least squares method. For the type of In(r) singularity
the effect of the accuracy of the determined K on the stress near the singular point is small.

For a quarter-planes joint in Cartesian coordinates, the stress components (1, and Tn

are independent of r (the distance from the singular point) and the factor K. Therefore, Cf\

and T \T are not singular. Only the stress component Cfy is singular.
The case of OJ -+ 0 does not mean that the stress singularity disappears for a joint with

free edge under thermal loading. For joints with very small OJ (<0 < 10 2
) in the type of r -"

singularity, stresses near the singular point can be described also well by the equations for
the type of In(r) stress singularity. Especially, the equations for the type of In(r) stress
singularity with K = 0 can be applied to calculate stresses near the singular point for joints
with fl l !L '> 1 and fl,/ L '> I. This means that the stresses near the singular point can be
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calculated without using any FEM. The error is less than 10% for w < 0.0 I and for
w < 0.005 the error is less than 5% with r!L < 10 2. If the corresponding value of K in eqn
(24) is used, the error is smaller.
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